Posterior simulation in the generalized linear mixed model with semiparametric random effects

نویسنده

  • Subharup Guha
چکیده

Generalized linear mixed models with semiparametric random effects are useful in a wide variety of Bayesian applications. When the random effects arise from a mixture of Dirichlet process (MDP) model with normal base measure, Gibbs sampling algorithms based on the Pólya urn scheme are often used to simulate posterior draws in conjugate models (essentially, linear regression models and models for binary outcomes). In the non-conjugate case, the algorithms proposed by MacEachern and Müller (1998) and Neal (2000) are often applied to generate posterior samples. Some common problems associated with simulation algorithms for non-conjugate models include convergence and mixing difficulties. This paper proposes an algorithm for MDP models with exponential family likelihoods and normal base measures. The algorithm proceeds by making a Laplace approximation to the likelihood function, thereby matching the proposal with that of the Gibbs sampler. The proposal is accepted or rejected via a Metropolis-Hastings step. For conjugate MDP models, the algorithm is identical to the Gibbs sampler. The performance of the technique is investigated using a Poisson regression model with semiparametric random effects. The algorithm performs efficiently and reliably, even in problems where large sample results do not guarantee the success of the Laplace approximation. ∗Subharup Guha is Assistant Professor, Department of Statistics, University of Missouri-Columbia, Columbia, MO 65211-6100 (E-mail: [email protected]). The author thanks Professor Steven MacEachern, the unknown Associate Editor and the unknown referee for many insightful comments that helped improve the focus of the paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Inference for Generalized Additive Mixed Models Based on Markov Random ®eld Priors

Most regression problems in practice require ¯exible semiparametric forms of the predictor for modelling the dependence of responses on covariates. Moreover, it is often necessary to add random effects accounting for overdispersion caused by unobserved heterogeneity or for correlation in longitudinal or spatial data. We present a uni®ed approach for Bayesian inference via Markov chain Monte Car...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Bayesian Inference for Generalized Additive Regression based on Dynamic Models

We present a general approach for Bayesian inference via Markov chain Monte Carlo MCMC simulation in generalized additive semiparametric and mixed models It is particularly appropriate for discrete and other fundamentally non Gaussian responses where Gibbs sampling techniques developed for Gaussian models cannot be applied We use the close relation between nonparametric regression and dynamic o...

متن کامل

Independent and Identically Distributed Monte Carlo Algorithms for Semiparametric Linear Mixed Models

Hybrid versions of independent and identically distributed weighted Chinese restaurant (WCR) algorithms are developed for inference in semiparametric linear mixed models under minimal assumptions for the random-effects distributions. The WCR method of working with the posterior partition structure leads to Rao–Blackwell estimates for higher-order moments of random effects, such as skewness and ...

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007